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Abstract. In this article we show that boundary conditions can be treated as Lagrangian and Hamiltonian
constraints. Using the Dirac method, we find that boundary conditions are equivalent to an infinite chain
of second class constraints, which is a new feature in the context of constrained systems. Constructing
the Dirac brackets and the reduced phase space structure for different boundary conditions, we show why
mode expanding and then quantizing a field theory with boundary conditions is the proper way. We also
show that in a quantized field theory subjected to the mixed boundary conditions, the field components
are non-commutative.

1 Introduction

It is well known that to formulate a general classical field
theory defined in a box, besides the equations of motion
one should know the behavior of the fields on the bound-
aries: the boundary conditions. Boundary conditions are
usually relations between the fields and their various
derivatives, including the time derivative, on the bound-
aries, which are expected to hold at all times. In Hamilto-
nian language the boundary conditions are in general func-
tions of the fields and their conjugate momenta; hence the
field theories subjected to the boundary conditions might
be understood by the prescription for handling the con-
strained systems proposed by Dirac [1].

In the usual field theory arguments, since boundary
conditions are usually linear combinations of fields and
their momenta, one can easily impose them on the solu-
tions of the equations of motion, and find the final re-
sult. But imposing the boundary conditions may in some
special cases leads to inconsistencies with the canonical
commutation relations [2–7].

In this article, considering the boundary conditions as
constraints, we apply the Dirac procedure to this con-
strained system. Although this idea has been used in [5,6],
the problem has new and special features in the context
of constrained systems on which we mostly concentrate.

In the second section, we review the Lagrangian and
Hamiltonian constrained systems. In Sect. 3, to visualize
the seat of boundary conditions we take a toy model and
by discretizing this model we show that boundary condi-
tions are in fact the equations of motion for the points
at the boundaries so that when we go to the continuum
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limit, i.e. the original theory, the acceleration term dis-
appears. In other words, boundary conditions are La-
grangian constraints which are not consequences of a sin-
gular Lagrangian. In Sect. 4, going to the Hamiltonian pic-
ture we study the constraint structure resulting from the
boundary conditions, and apply it explicitly to some field
theories. Implying constraint consistency we show that al-
though the Lagrange multiplier is determined, the con-
straint chain is not terminated. This is a new feature in
the constrained systems analysis. Exhausting all the con-
sistency checks we end up with an infinite constraint chain
which all are of second class. This is another new feature
of this constraint structure, which recently has also been
addressed in [6]. Moreover, we construct the fundamen-
tal Dirac brackets, the Dirac brackets of fields and their
conjugate momenta. In Sect. 5, by a canonical transfor-
mation we go to the Fourier modes, in terms of which the
constraint chain obtained in the previous section can eas-
ily be solved. In this way we prove that using the proper
mode expansions is equivalent to working in the reduced
phase space. In Sect. 6, we apply the machinery developed
in the previous sections to the case of mixed boundary
conditions, i.e. we find the constraints chain, the Dirac
bracket and the reduced phase space. The new and inter-
esting result of this case is that the Dirac bracket of two
field components is obtained to be non-zero, and hence
in the quantum theory these field components are non-
commuting. The last section is devoted to the concluding
remarks.

2 Review of Dirac procedure

Given the Lagrangian L(q, q̇) (or L(φ, ∂φ) in a field the-
ory), the Lagrangian equations of motion are
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Li = Wij q̈j + αi = 0, (2.1)

where Li are Eulerian derivatives, Wij(q, q̇) ≡ ∂2L/
∂q̇i∂q̇j is called the Hessian matrix, and αi ≡ ∂L/∂qi −
q̇j

(
∂2L/∂q̇i∂qj

)
. If |Wij | = 0, the Lagrangian is called sin-

gular, and in this case the number of equations containing
accelerations is less than the number of degrees of freedom.
Hence a number of Lagrangian constraints, γa(q, q̇) = 0,
emerges. To obtain these constraints we should simply
multiply both sides of (2.1) by the null eigenvector λa

i
of W , so γa(q, q̇) = λa

i αi [8]. Then we should add the
time derivatives of the constraints, γ̇a(q, q̇), to the set of
equations of motion to get new relations containing the
accelerations. As a result two cases may occur.

(1) The rank of equations with respect to acceleration is
equal to the number of degrees of freedom.

(2) New constraints, acceleration-free relations, may
emerge.

In the first case the equations of motion can be solved
completely; however, the solutions should obey the ac-
celeration-free equations, the constraints. In the second
one, the derivatives of new constraints and derivatives of
previous constraints should be added to the equations of
motion, and the scenario should be repeated.

In the end, there may remain a number of undeter-
mined accelerations; it has been shown that these corre-
spond to the gauge degrees of freedom and are related to
the first class Hamiltonian constraints. Moreover, roughly
speaking, there may exist some degrees of freedom which
have no dynamics and are completely determined via the
constraints. These are related to the second class Hamil-
tonian constraints [9].

Let us study the Hamiltonian formulation. Singularity
of the Hessian matrix, pi/∂q̇

j , implies the Legendre trans-
formation, (q, q̇) → (q, p), to have a zero Jacobian and
hence, the set of momenta, pi,

pi =
∂L

∂q̇i
, (2.2)

are not independent functions of q and q̇. So a number of
Hamiltonian primary constraints turns up:

Φ(0)
a (q, p) = 0. (2.3)

It can be shown that [1] the dynamics of any function
in phase space is obtained by

ġ ≈ {g,HT }P.B., (2.4)

where the weak equality, ≈, is the equality on the con-
straint surface, and

HT = H + λaΦa (2.5)

is the total Hamiltonian, λa being the Lagrange multipli-
ers.

Like the Lagrangian case the consistency conditions
of the primary constraints should be investigated, i.e. the
constraints should be valid under the time evolution:

Φ̇(0)
a ≈ {Φ(0)

a , HT }P.B. ≈ {Φ(0)
a , H} + λb{Φ(0)

a , Φ
(0)
b } ≈ 0.

(2.6)

If the above relation does not hold identically, then two
possibilities remain:

(i) (i) the {Φ(0)
a , Φ

(0)
b }’s weakly vanish. In this case new

Hamiltonian constraints,

Φ(1) = {Φ(0)
a , H}, (2.7)

turn up;
(ii) the {Φ(0)

a , Φ
(0)
b } do not vanish, yielding equations for

determining λa.

In general, depending on the rank of the matrix {Φ(0)
a ,

Φ
(0)
b }, we may have a mixture of two possibilities. That

is, some of the Lagrange multipliers are determined and a
number of new constraints emerge. Here we do not bother
the reader with the details. A complete and detailed dis-
cussion can be found in [9].

Now the consistency conditions of Φ(1)
a should be ver-

ified which may result in some new constraints Φ(2)
a . The

procedure goes on, and finally we end up with some con-
straint chains. Roughly speaking, each chain terminates
if a Lagrange multiplier is determined or if we get an
identically satisfied relation. The latter case occurs when
the last constraint has a weakly vanishing Poisson bracket
with the primary constraints and the Hamiltonian.

We denote the set of constraints Φ(1), Φ(2), ... as sec-
ondary constraints. These are really consequences of pri-
mary constraints while the primary constraints, by them-
selves have their origin in the singularity of the Lagrangian
(singularity of the Hessian matrix). In a pure Hamiltonian
point of view, however, the origin of primary constraints is
not essential. In any way given some primary constraints,
we should build the total Hamiltonian, (2.5), and check
consistency.

There is another important classification of con-
straints. If the Poisson bracket of some constraint with
all the constraints in the chain vanishes, it is called first
class. If the matrix of mutual Poisson brackets of a subset
of constraints, CMN ,

CMN = {ΦM , ΦN}, (2.8)

has the maximal rank, it is invertible; then we deal with
second class constraints. It is shown that a constraint
chain terminating with an identity is of the first class and
when we end with determining Lagrange multipliers they
are of the second class [9]. To find the dynamics of a sys-
tem with second class constraints, one may use the Dirac
bracket,

{A,B}D.B. = {A,B}P.B. − {A,ΦM}P.B.

(C−1)MN{ΦN , B}P.B.. (2.9)

The important property of the Dirac bracket is that for an
arbitrary function A and for all second class constraints
ΦM ,



M.M. Sheikh-Jabbari, A. Shirzad: Boundary conditions as Dirac constraints 385

{ΦM , A}D.B. = 0. (2.10)

It can be shown that using the Dirac brackets instead
of Poisson brackets is equivalent to a priori putting the
second class constraints strongly equal to zero.

For second class constraints we can always find a
canonical transformation such that the constraints, ΦM ,
lie on the first 2n coordinates (q1, ..., qn; p1, ..., pn) of the
phase space and the remaining degrees of freedom, (Q1, ...,
QN−n;P1, ..., PN−n) are unconstrained. The Dirac bracket
in the original phase space is equal to the Poisson bracket
in the space (Q1, ..., QN−n;P1, ..., PN−n), the reduced
phase space [1,10,11]. Although finding the above canon-
ical transformation is not an easy task, for the case we
study in this paper, boundary conditions as constraints,
we show that using the suitable mode expansions, is in
fact equivalent to going to reduced phase space.

3 Boundary conditions as constraints

Boundary conditions are acceleration-free equations which
in general are not related to a singular Lagrangian. To
visualize this point, let us take a simple (1+1) field theory
as a toy model:

S =
1
2

∫ l

0
dx
∫ t2

t1

dt[(∂tφ)2 − (∂xφ)2]. (3.1)

Variation of the action with respect to φ gives

δS =
∫ l

0
dx
∫ t2

t1

dtL(φ)δφ+
∫ t2

t1

dt(∂xφ)δφ|l0

+
∫ l

0
dt(∂tφ)δφ|t2t1 , (3.2)

where L(φ) = ∂2
t φ − ∂2

xφ is the Eulerian derivative. For
an arbitrary δφ, the variation of the action vanishes if the
three terms in the above equation vanish independently.
The first term in (3.2) leads to equations of motion and
the last term to the initial conditions. The second term,
which is called the surface term, results in the bound-
ary conditions. For this term to vanish, there are two
choices: δφ|boundary = 0, the Dirichlet boundary condi-
tions, or ∂xφ|boundary = 0, the Neumann boundary con-
ditions. The boundary conditions, unlike the equations of
motion, are acceleration-free equations and should hold
at all times. In other words, they can be treated as La-
grangian constraints. To clarify this point we repeat the
above argument in the discrete version:

S =
1
2

∫ t2

t1

dt
N∑

i=0

ε(∂tφi)2 −
N−1∑
i=0

1
ε
(φi − φi+1)2, (3.3)

φi(t) = φ(x, t)|x=xi ; xn = nε, (3.4)

and ε = l/N so that ε → 0 (N → ∞) reproduces the
continuum theory.

Demanding the variation of (3.3) to vanish leads to1

ε∂2
t φ0 =

1
ε
(φ1 − φ0), (3.5)

ε∂2
t φi =

1
ε
(φi+1 − 2φi + φi−1), i 	= 0, N, (3.6)

ε∂2
t φN =

1
ε
(φN − φN−1). (3.7)

Taking the continuum limit and assuming that accelera-
tions of the end points are finite, the equations for 0, N
give

lim
1
ε
(φ1 − φ0) = 0 and lim

1
ε
(φN − φN−1) = 0.

(3.8)

Hence in the continuum limit equations of motion for the
end points give acceleration-free equations, the Lagrangian
constraints, whereas (3.6) leads to L(φ) = 0, which actu-
ally contains the acceleration term.

A new feature appearing here is that, unlike the usual
Lagrangian constraints, boundary conditions are the con-
straints which are not consequences of the singularity of
the Lagrangian, but a result of taking the continuum limit.

4 The Hamiltonian setup

In this section, by going to the Hamiltonian formulation,
we apply the Dirac procedure to a field theory with given
boundary conditions. Again, we take our simple toy model
and treat the boundary conditions as Hamiltonian pri-
mary constraints:

Φ(0) = ∂xφ|x=0. (4.1)

Here we explicitly work out the Neumann boundary con-
dition at one end, the Neumann boundary condition at
the other end, and the Dirichlet cases can be worked out
similarly. The total Hamiltonian is built by adding the
constraint to the Hamiltonian by an arbitrary Lagrange
multiplier:

HT = H + λΦ(0), (4.2)

with

H =
1
2

∫ l

0
dxΠ2 + (∂xφ)2, (4.3)

Π = ∂tφ. (4.4)

We should recall that as discussed in Sect. 2, the appear-
ance of the constraints (4.1) is not a consequence of
the definition of the momenta for an ordinary singular
Lagrangian and hence, the transformation (4.4) between

1 It is worth noting that we still have the options δφ0 or
δφN = 0, which in the continuum limit translate into the
Dirichlet boundary conditions



386 M.M. Sheikh-Jabbari, A. Shirzad: Boundary conditions as Dirac constraints

the velocities and momenta is well defined and invertible
throughout all the points, even at the boundaries.

Now we should check the consistency condition

Φ̇(0) = {Φ(0), HT }P.B. = ∂xΠ|0 ≡ Φ(1), (4.5)

which leads to the secondary constraint, Φ(1). It should be
noted that to obtain (4.5), although the conditions are im-
posed at the boundaries, the fields can safely be extended
into the neighborhood of the boundaries and we can use
Φ(0) =

∫
δ(x)∂xφdx.

We should go further:

Φ̇(1) = {Φ(1), HT } = {Φ(1), H} + λ{Φ(1), Φ(0)} = 0.
(4.6)

The second term on the right hand side,

λ{Φ(1), Φ(0)} =
∫

δ(x)δ(x′){∂xΠ, ∂x′φ}dxdx′

= −
∫

δ(x)δ(x′)∂x∂x′δ(x− x′)dxdx′, (4.7)

is not well defined, and formally can be written as ∂2
xδ(x−

x′)|x=x′=0. This term compared to the first term is in-
finitely large. The only way to impose the consistency
condition on the constraints is by

λ = 0 (4.8)

and

{Φ(1), H} = 0. (4.9)

There is a new feature appearing which is not one of the
cases (i) and (ii) discussed in Sect. 2. The consistency con-
dition, (4.6), reduces to two equations, (4.8) and (4.9), and
although the Lagrange multiplier is determined the con-
straint chain is not terminated.

The above discussion can be better understood if the
calculation is regularized by considering the discrete case.
Using the discrete version of (4.6), λ turns out to be of
the order of ε; going to the continuum limit it vanishes,
and the other term, {Φ(1), H}, should vanish separately.

Defining {Φ(1), H} as Φ(2), the other secondary con-
straint, we find

Φ(2) = ∂3
xφ|0. (4.10)

Furthermore,

Φ(3) ≡ Φ̇(2) = {Φ(2), HT } = {Φ(2), H} = ∂3
xΠ|0. (4.11)

This process should be continued and finally we are left
with an infinite number of constraints:

Φ(n) =

{
∂

(n+1)
x φ|0, n = 0, 2, 4, ...,
∂

(n)
x Π|0, n = 1, 3, 5, ...

(4.12)

Having exhausted the constraint consistency conditions,
we show that the Poisson bracket of the constraints,

Cmn ≡ {Φ(m), Φ(n)}, (4.13)

is non-singular and hence, the set of constraints (4.12) are
all of second class. To show this, first we calculate

Cmn =



0, m, n = 0, 2, 4, ...
0, m, n = 1, 3, 5, ...∫
δ(x)δ(x′)∂m+1

x ∂n
x′δ(x− x′)dxdx′,

m = 0, 2, 4, ..., n = 1, 3, 5, ...

(4.14)

In order to find detC, the non-zero elements should be reg-
ularized. This regularization can be done by two methods,
discretization or using a limit of a regular function, e.g.
the Gaussian function, to represent δ(x). Here we choose
the second one, but one can easily show that the other
method gives the same results. Inserting

δ(x− x′) = lim
ε→0

1
ε
√
π
e−(x−x′)2/ε2 (4.15)

into (4.14), using the properties of the Hermite polyno-
mials [12] and performing the integration over x, x′ by
means of the corresponding delta functions, δ(x), δ(x′),
we find∫

δ(x)δ(x′)∂m+1
x ∂n

x′δ(x− x′)dxdx′

=
−1√
π
ε−(m+n+2)Hm+n+1(0)

=
−1√
π
(−2)(n+m+1)/2ε−(m+n+2)(m+ n)!!,

m = 0, 2, 4, ..., n = 1, 3, 5, ... (4.16)

Hn(0) denotes the Hermite polynomials at x = 0 [12].
Putting these together, C is finally found to be

C = A⊗B, (4.17)

where

A =

(
0 1

−1 0

)
,

and B is an infinite dimensional matrix with

Bmn =
−1√
π
(−2)(n+m−1) ((2(m+ n) − 3)!!

ε−2(m+n)−1 ,

m, n = 1, 2, ... (4.18)

It is straightforward to show that the matrix B has non-
zero determinant, i.e. the matrix C is invertible, and hence
all the constraints in the chain are second class. One way
to consider them all is using the Dirac bracket. To ob-
tain Dirac bracket of any two arbitrary functions in the
phase space, it is enough to calculate the Dirac brackets
of (φ, φ) , (φ,Π) and (Π,Π)2. We have

2 More detailed calculations can be found in the appendix
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{φ(x), φ(x′)}D.B. = −{φ(x), Φ(m)}C−1
mn{Φ(n), φ(x′)}

= 0. (4.19)

{Π(x), Π(x′)}D.B. = −{Π(x), Φ(m)}C−1
mn{Φ(n), Π(x′)}

= 0, (4.20)
{φ(x), Π(x′)}D.B. = δ(x− x′)

− {φ(x), Φ(m)}C−1
mn{Φ(n), Π(x′)}

= δ(x− x′) −R(x, x′). (4.21)

Without using the explicit form of C−1 one can show

R(x, x′) = κεδ(x)δ(x′), (4.22)

where κ is a numeric factor. To find κ, let us obtain the
Dirac bracket of the constraint Φ0 with an arbitrary func-
tion f ; using (2.10) we should have

{∂xφ(x)|0, f(φ,Π)}D.B. =
∫

δ(x)∂x{φ(x), f}D.B. = 0.

(4.23)

Denoting ∂f/∂(Π(x′)) ≡ g(x′), we can write∫
δ(x)∂x{φ(x), Π(x′)}D.B.g(x′) = 0. (4.24)

Inserting (4.21) and (4.22) into (4.24) this reduces to∫
(∂xδ(x) + κεδ(x)∂xδ(x))g(x) = 0. (4.25)

Remembering (4.15), we find

κ = −√
π. (4.26)

Hence

{φ(x), Π(x′)}D.B. = δ(x− x′) + κεδ(x)δ(x′). (4.27)

The appearance of the regularization parameter ε in the
Dirac bracket sounds bad, but since the second term has
two delta functions, to be of the same order of the first
term in fact an ε factor is necessary. We will clarify and
discuss this point in the next section.

The Dirichlet boundary condition can be worked out
similarly. In this case the constraint chain is obtained as

Φ(n) =

{
∂

(n)
x φ|0, n = 0, 2, 4, ...
∂

(n−1)
x Π|0, n = 1, 3, 5, ...

(4.28)

Performing the calculations, one can show that the Dirac
brackets are like the Neumann case, except for the κ fac-
tor, which is +π1/2.

5 Mode expansion and reduced phase space

In the previous section we showed that a field theory sub-
jected to the Neumann or Dirichlet boundary conditions
is a system constrained to an infinite chain of second class

constraints. As mentioned in Sect. 2, for a system with sec-
ond class constraints, there is a subspace of phase space
which is spanned by a set of unconstrained canonical vari-
ables, the reduced phase space. The important property
of these variables is that the Poisson bracket in terms of
them is equivalent to the Dirac bracket defined on the
whole constrained phase space.

In this section we will explicitly find the reduced phase
space and show that it is in fact equivalent to phase space
determined by the Fourier modes.

Let us consider the Fourier transformed variables

φ(x) =
1√
2π

∫
φ(k)eikxdk,

φ(k) =
1√
2π

∫
φ(x)e−ikxdx (5.1)

Π(x) =
1√
2π

∫
Π(k)e−ikxdk,

Π(k) =
1√
2π

∫
Π(x)eikxdx. (5.2)

One can easily show that the above transformation is
canonical:

{φ(k), φ(k′)} = 0,
{Π(k), Π(k′)} = 0,
{φ(k), Π(k′)} = δ(k − k′). (5.3)

The Neumann (Dirichlet) constraint chain, (4.12) and
(4.28), in terms of the new variables are easily obtained.
All the odd (even) moments of φ(k) and Π(k) are zero.
The most general solution to these conditions is that φ(k)
and Π(k) are even (odd) functions of k. Then (5.1) gives3

φ(x) =
1√
π

∫
φ(k) cos kxdk,

Π(x) =
1√
π

∫
Π(k) cos kxdk. (5.4)

The main advantage of the Fourier modes, φ(k) and Π(k),
is that although they are limited to even (odd) functions,
they are still canonical variables, in contrast with the orig-
inal fields φ(x) and Π(x) which lose their usual canonical
structure due to constraints.

To compare the Dirac bracket results with those of the
reduced phase space, we work out the Poisson brackets of
φ(x) and Π(x). Using (5.2) and (5.3) we have

{φ(x), φ(x′)} = 0,
{Π(x), Π(x′)} = 0,

{φ(x), Π(x′)} =
1
π

∫
cos kx cos kx′dk

≡ δN(x, x′), (5.5)

for the Neumann boundary conditions. For the Dirichlet
case only {φ,Π} differs from the above:

3 For the Dirichlet case cosine should be replaced by sine
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{φ(x), Π(x′)} =
1
π

∫
sin kx sin kx′dk ≡ δD(x, x′). (5.6)

Performing the integrations we have

δN(x, x′) = δ(x− x′) + δ(x+ x′),
δD(x, x′) = δ(x− x′) − δ(x+ x′). (5.7)

If we consider only the positive x’s, x ≥ 0, δN and δD for
x, x′ 	= 0 are exactly δ(x− x′). For x, x′ = 0, using (4.15)
the delta functions can be regularized to
 δ(x− x′) + δ(x+ x′) =

2√
πε
,

δ(x− x′) − δ(x+ x′) = 0,
at x = x′ = 0. (5.8)

Hence δN and δD for x ≥ 0 are in exact agreement with
the Dirac bracket results obtained in the previous sec-
tion. The above argument clarifies why using the usual
mode expansions to quantize a system with Neumann or
Dirichlet boundary conditions, i.e. imposing the boundary
conditions and then quantizing, works.

6 Mixed boundary conditions,
another example

In this section we handle a more general family of bound-
ary conditions, mixed boundary conditions, which are
combinations of the Neumann and Dirichlet cases. It has
been shown that these boundary conditions lead to un-
usual results in the context of string theory [2–7].

As a toy model for a field theory resulting in the mixed
boundary conditions let us consider

S =
1
2

∫ l

0
dx
∫ t2

t1

dt
[
(∂tφi)2 − (∂xφi)2 + Fij∂tφi∂xφj ],

(6.1)

where i, j = 1, 2 and Fij is a constant antisymmetric back-
ground. Varying S with respect to φi leads to

∂2
t φi − ∂2

xφ
i = 0, (6.2)

∂xφi + Fij∂tφj = 0, at x = 0, l. (6.3)

Equations (6.3), as discussed in Sect. 3, give the
Lagrangian constraints. In the discretized version, (6.3)
are the equations of motion for the end points, and in
the continuum limit the acceleration term disappears. It
is worth noting that (6.3) reproduce the Neumann and
Dirichlet boundary conditions for F = 0 and ∞, respec-
tively.

Now to apply the Dirac method, we go to the Hamil-
tonian formulation:

Πi = ∂tφi + Fij∂xφj , (6.4)

H =
1
2

∫ l

0
(Πi − Fij∂xφj)2 + (∂xφi)2dx, (6.5)

and the primary constraints

Φ
(0)
i = Φi(x)|x=0, (6.6)

with

Φi(x) ≡ Mij∂xφj + FijΠj = 0, Mij = (1 − F 2)ij .
(6.7)

Note that in this case the Lagrangian constraints, (6.3),
depend on the velocities, and as mentioned before, the
transformation (6.4), is non-singular and the Lagrangian
constraints can be translated into Hamiltonian constraints,
(6.7), without any difficulty. The consistency of the pri-
mary constraints should be verified:

Φ̇
(0)
i = {Φ(0)

i , HT } = {Φ(0)
i , H} + λj{Φ(0)

i , Φ
(0)
j } = 0.

(6.8)

The first term is easy to work out:

Φ
(1)
i = {Φ(0)

i , H} = ∂xΠi|x=0. (6.9)

Similar to the arguments of Sect. 4, {Φ(0)
i , Φ

(0)
j } is infinitely

large compared to the first term, and the only way for (6.8)
to be satisfied is

λi = 0 and Φ
(1)
i = 0. (6.10)

Again, although the Lagrange multiplier, λi, is deter-
mined, there are secondary constraints, Φ(1)

i = 0. More-
over, we have the advantage that λi disappears in the
remaining steps.

Direct calculations on the consistency conditions for
the constraints leads to the chain

Φ
(n)
i =

{
∂n

xΦi|0, n = 0, 2, 4, ...,
∂

(n)
x Πi|0, n = 1, 3, 5, ...

(6.11)

To verify that these constraints are really second class, we
study the matrix Cmn

ij ≡ {Φ(m)
i , Φ

(n)
j }:

Cmn
ij =




0, m, n = 1, 3, 5, ...,
−2(MF )ij

∫
δ(x)δ(x′)∂m+1

x ∂n
x′δ(x− x′)dxdx′,
m, n = 0, 2, 4, ...,

Mij

∫
δ(x)δ(x′)∂m+1

x ∂n
x′δ(x− x′)dxdx′,

m = 0, 2, 4, ..., n = 1, 3, 5, ...
(6.12)

C can be written in the form of

C = F ⊗B, (6.13)

where F is a 4 × 4 matrix:

F =

(
−2(MF ) M

−M 0

)
, (6.14)
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and B is given by (4.18). In Sect. 4, we discussed that B
is invertible. Since detF 	= 0, C is invertible too; hence all
the constraints in the chain (6.11) are second class.

One can show that the fundamental Dirac brackets are
as follows:

{φi(x), φj(x′)}D.B.

= −{φi(x), Φ
(m)
k }(C−1)mn

kl {Φ(n)
l , φj(x′)}

= (−2M−1F )ij(ε2
√
πδ(x)δ(x′)), (6.15)

{Πi(x), Πj(x′)}D.B.

= −{Πi(x), Φ
(m)
k }(C−1)mn

kl {Φ(n)
l , Πj(x′)} = 0, (6.16)

{φi(x), Πj(x′)}D.B. = δ(x− x′)

−{φi(x), Φ
(m)
k }(C−1)mn

kl {Φ(n)
l , Πj(x′)}

= δ(x− x′) −R(x, x′) = δN(x, x′). (6.17)

The important result of the mixed case is (6.15); the
Dirac bracket of two field components is non-zero. This
means that in the quantized theory these field compo-
nents are non-commuting. In the string theory, where the
fields describe the space coordinates, (6.15) tells us that
the space probed by open strings with mixed boundary
conditions is a non-commutative space [2–4].

Using the canonical (or Fourier) transformations, (5.1)
and (5.2), we can explicitly build up the reduced phase
space for the mixed case. Let Φi(k) represent the Fourier
modes of Φi(x) defined in (6.7),

Φi(x) =
1√
2π

∫
Φi(k)eikxdk,

Φi(k) =
1√
2π

∫
Φi(x)e−ikxdx, (6.18)

Using (5.2), the Poisson brackets of Φi(k) and Πi(k) can
be worked out. Imposing the constraints (6.11), we find
that Φi(k) and Πj(k), are odd and even functions of k,
respectively:

Φi(x) =
1√
π

∫
Φi(k) sin kxdk,

Πi(x) =
1√
π

∫
Πi(k) cos kxdk. (6.19)

Remembering (6.7), we can derive the field compo-
nents:

φi(x) =
M−1

ij√
π

∫ −dk
k

(Φj(k) cos kx

+FjkΠk(k) sin kx), (6.20)

which explicitly satisfy the mixed boundary conditions.
Having derived the mode expansions of the fields and

their conjugate momenta, we can explicitly work out their
Poisson brackets:

{φi(x), φj(x′)}
=

1
π

∫
dk
k

dk′

k′ [(M
−1F )ik{Φk(k), Πl(k′)}M−1

lj

× cos kx sin k′x′ + (M−1F )jk{Πk(k), Φl(k′)}M−1
il

× cos k′x′ sin kx]

=
−1
π

∫
dk
k
(M−1F )ij(cos kx′ sin kx+ cos kx sin kx′)

= (M−1F )ij
∫ x

(δN(y, x′) − δD(y, x′))dy

= −2(M−1F )ij
∫ x

δ(y + x′)dy. (6.21)

Since for x, x′ ≥ 0

∫ x

δ(y + x′)dy =

{
1, x = x′ = 0,
0, otherwise,

(6.22)

(6.21) is non-zero only for x, x′ = 0:

{φi(0), φj(0)} = −2(M−1F )ij . (6.23)

Comparing (6.21) and (6.15), we find that they are exactly
the same. In other words, (6.19) and (6.20) are functions
defining the reduced phase space.

In the context of string theory, (6.21) implies that the
end points of open strings subjected to mixed boundary
conditions are living in a non-commutative space. The
mixed open strings appear when we are studying D-branes
in a NSNS two-form background. In this case, (6.21) tells
us that the world-volume of such branes are non-commu-
tative planes.

We can also calculate {Πi(x), Πj(x′)} and {φi(x),
Πj(x′)}. The results are in exact agreement with (6.16)
and (6.17).

7 Concluding remarks

In this paper, we have studied the old and well-known
problem of field theories with boundary conditions from
a new point of view. We discussed that in the Lagrangian
formulation boundary conditions are Lagrangian
constraints which are not a consequence of a singular La-
grangian. For further study we built the Hamiltonian for-
mulation, and considered boundary conditions as primary
constraints. Asking for the constraints consistency condi-
tions we found two new features in the context of con-
strained systems.

(1) Although the Lagrange multiplier in the total Hamil-
tonian is determined, the constraints chain is contin-
ued.

(2) Boundary conditions are equivalent to an infinite
chain of second class constraints. This property was
also observed in [6].

Constructing the Dirac brackets of the fields and their
conjugate momenta for these second class constraints, we
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showed that the method based on a mode expansion is
equivalent to working in the reduced phase space.

The relation between the Hamiltonian method we de-
veloped here and the usual method of imposing boundary
conditions in the equations of motion can simply be under-
stood. In the former, to ensure that boundary conditions
are satisfied, we make the Taylor expansion of boundary
conditions as a function of time, and put all the coefficients
equal to zero. These coefficients are exactly our constraint
chain. But in the latter, the Fourier mode expansion is
used and boundary conditions are guaranteed by choos-
ing all the Fourier components to satisfy the boundary
conditions.

In the last section of the paper, we handled the mixed
boundary conditions which is an exciting problem in the
context of string theory [7]. Having non-commuting field
components is the interesting feature appearing in this
case. Besides the string theory, mixed boundary conditions
can be encountered in the context of gauge theories when
we also consider the θ term:

S =
1
4

∫
(F2

µν + θεµναβFµνFαβ).

In the above action θ plays a role similar to F in our toy
model. Varying the action gives a surface term, the van-
ishing of which leads to the mixed boundary conditions.
Quantizing this theory is an interesting problem we post-
pone to future work.
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Appendix

In this appendix we present some of the calculation details.
We have

k(m)(x) ≡ {φ(x), Φ(m)}

=

{
0, m = 0, 2, 4, ...,
{φ(x), ∂m

x Π(m)|0} = km(x), m = 1, 3, 5, ...,

l(m)(x) ≡ {Π(x), Φ(m)}

=

{
{Π(x), ∂m

x φ(m)|0} = lm(x), m = 0, 2, 4, ...,
0, m = 1, 3, 5, ...,

km(x) =
∫

∂m
x′ δ(x− x′)δ(x′)dx′

=
1√
επ

exp
(−x2

ε2

)
1
εm

Hm(0)

≡ δ(x)km,

lm(x) = −
∫

∂m+1
x′ δ(x′ − x)δ(x′)dx′

=
1√
επ

exp
(−x2

ε2

)
1

εm+1Hm+1(0)

≡ δ(x)km+1,

where Hm(0) is the Hermite polynomial at zero. Then one
can easily work out {φ(x), Π(x′)}D.B.:

{φ(x), Π(x′)}D.B. = δ(x− x′) + km+1knB
−1
mnδ(x)δ(x

′).

The power of ε in km+1knB
−1
mn, can be read off from the ex-

plicit form of km andBmn, and the result is km+1knB
−1
mn =

κε. Calculations for the mixed boundary conditions can be
performed similarly.
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